කේම්බ්රිජ් සරසවියේ මහාචාර්ය ඇන්ටොනි හෙවිෂ් (Antony Hewish) ගේ මූලිකත්වයෙන් යුතුව 1967 වර්ෂයේදී ගුවන්විදුලි තාරකා විද්යාවට අයත් එක්තරා සන්සිද්ධියක් නිරීක්ෂණය කිරීමේ අරමුණින් විශේෂ පරීක්ෂණයක් දියත් කර තිබුනි. මූලික වශයෙන් මෙහිදී සිදු වූයේ අභ්යාවකාශයේ සිට එන රේඩියෝ තරංග ග්රහණය කර ගැනීම වූ අතර ඒ සදහා විශාල රේඩියෝ ඇන්ටනාවක් යොදාගත් අතර ලැබෙන තරංග සටහන් කිරීම සදහා විශේෂ කඩදාසි රෝල් යනාදියද යොදාගැණුනි. මේ පරීක්ෂණයේදී මහාචාර්ය හෙවිෂ් යටතේ වැඩ කල ශිෂ්යයන් අතර අවුරුදු 24 වයසැති ජොසෙලින් බෙල් නම් ආචාර්ය උපාධි අපේක්ෂක ශිෂ්යයාවක්ද විය. පරීක්ෂණයේදී තරංග සටහන් කිරීම සදහා භාවිතා වන තීන්ත ආදිය නැවත පිරවීම වැනි නඩත්තු කිරීම් කටයුතු සැම දිනකම කල යුතුව තිබිණි. මේ සදහා ජොසෙලින් බෙල් සැමදාම ඇගේ බයිසිකලයෙන් නිරීක්ෂනාගාරය වෙත යාම පුරුද්දක් කරගෙන තිබිණි. මේ අපූරු තරංග රටාව ඇයට නිරීක්ෂණය කිරීමට හැකි වූයේ මෙවැනි එක් අවස්ථාවකදීය.
ඇන්ටොනි හෙවිෂ්
මාස 3 ක පමණ නිහැඩියාවකින් පසු එම වසරේම නොවැම්බර් 28 වන දින නැවතත් අපූරු තරංග රටාව මතුවන්නට විය. මෙවර නම් තරංගය පැමිනෙන්නේ පිටත අභ්යාවකාශයේ සිට බව තහවුරු විය. විද්යුත් චුම්භක තරංගය නියත ආවර්ත කාලයක් සහිත එකක් වූ අතර සෑම ස්පන්ද දෙකක් අතර කාල පරාසය තත්පර 1.3373011512 පමන වන වඩාත් නිවැරදි අගයක් ගෙන තිබුනි. මෙවැනි ආකාරයේ නිරීක්ෂනයක් විද්යාඥයින් මීට පෙර අත් දැක නොතිබුනු බැවින් අපූරු තරංග රටාවට හේතුව කුමක් විය හැකිද යන්න පිලිබදව විශාල ගැටලුවක් මතු විය. එක් පිරිසක් තරංගය පිටසක්වලින් ලද පනිවිඩයක් ලෙස සැක කල අතර තවත් පිරිසක් මෙය අභයාවකාෂයේ යම් වස්තුවකින් නිකුත් කරන්නක් ලෙසද සිතූහ. කෙසේ වෙතත් තරංගයේ හැඩය අනුව මේ අත්භූත තරංග රටාවට පල්සාරයක් යන නම ලැබුණි.
දැන් තරංගය විස්තර කල හැක්කේ මෙය අභ්යාවකාශයේ යම් වස්තුවකින් නිකුත් කරන්නක් ලෙසිනි. මීට පෙර නිරීක්ෂණයට බදුන් නොවුනු මෙම වස්තුව කුමන ආකාරයේ එකක් විය හැකිද? එය කොතරම් විශාල විය හැකිද? විද්යුත් චුම්භක තරංගයක් නිපදවීමේ යාන්ත්රණය කුමක්ද?… තාරකා විද්යා ක්ෂේත්රය තුල විද්යාඥයින්ට විසදීමට නව අභියෝගයක් පැමිණ තිබේ. ඒ අනුව විවිධ පුද්ගලයින් විවිධ ආකෘති ඔස්සේ පල්සාර පැහැදිලි කිරීමට පෙලඹුනි.
පල්සාර පැහැදිලි කිරීමට පෙර අප පලමුව නියුට්රෝන තාරකා යනු මොනවාදයි සොයා බලමු.
නියුට්රෝන තාරකා
1932 දී ජේම්ස් චැඩ්වික්(James Chadwick) විසින් නියුට්රෝන නමැති උප පරමාණුක අංශු විශේෂය සොයාගැණුනි. නියුට්රෝන සොයාගැනීමෙන් වසරකට පමන පසු 1933 දී වෝල්ට බාඩ් (Walter Baade) සහ ෆ්රිට්ස් ස්විකි (Fritz Zwicky) යන අය විසින් නියුට්රෝන තාරකා නම් වස්තු විශේෂයක පැවැත්මක් හෙලිදරව් කෙරිනි. ඒ තාරකා මියයාමේ එක් ආකාරයක් වන සුපර්නෝවා පිපුරුමක ආකෘතිය නිර්මානය කිරීමට උත්සහ දැරීමේ අතුරු ප්රතිපලයක් ලෙසිනි. සැබවින්ම නියුට්රෝන තාරකා නිර්මාණය වන්නේද සුපර්නෝවා පිපුරුමක අතුරු ප්රතිඵලයක් ආකාරයටය.
වචනයේ පරිසමාර්ත අර්තයෙන්ම නියුට්රෝන තාරකා නිර්මාණය වී ඇත්තේ නියුට්රෝන වලිනි. උදාහරණයක් ලෙස අප අවට ඇති සියලු දේ නිර්මාණය වී ඇත්තේ පරමාණු නමැති තැනුම් ඒකකයෙන් වන බව අප දනිමු. නමුත් නියුට්රෝන තාරකා නිර්මාණය වී ඇත්තේ නියුට්රෝන නම් උප පරමාණුක අංශු වලිනි. මෙවැනි තාරකා තුල නියුට්රෝන ඉතා තදින් සිරවී තිබේ. කොතරම් තදින් සිරවී තිබේද කිවහොත් නියුට්රෝන දෙකක් අතර තිබිය හැකි අවම පරතරය වන තෙක්ම එකිනෙක ලංව පවතී. මෙලෙස අංශු එකිනෙක ඉතා තදින් බැදී පවතින විට ගොඩනැගෙන පීඩනය හැදින්වෙන්නේ Neutrone Degeneracy Pressure ලෙසිනි. නියුට්රෝන තාරකාවක් තම සමතුලිතතාව පවත්වා ගන්නේ කේන්ද්රය දෙසට යොමුවන අධික ගුරුත්ව බලය අංශු අතර ගොඩනැගෙන පීඩනයෙන්( Neutrone Degeneracy Pressure ) මැඩපවත්වා ගනිමිනි. නියුට්රෝන තාරකා සාමාන්යය තාරකාවකට (අප සූර්යයා වැනී) ඉතා කුඩා වේ. සන්සන්දනය කිරීමක් ලෙස දැක්වුවහොත් අප සූර්යයාගේ අරය 696000km වන නමුත් නියුට්රෝන තාරකාවක අරය 10- 15 km තරම් ඉතා කුඩා අගයකි.
නියුට්රෝන තාරකාවක ඝණත්වය ඉතා අධිකය. එය අපට පෘතුවියේදී අත්දකින පරිසරය තුලදී වටහාගත නොහැකි තරම් විශාල අගයකි. මේ නිසා කුඩා කොටසක වුවද ස්කන්ධය ඉතා විශාල අගයකි. උදාහරණයක් ලෙස අපට නියුට්රෝන තාරකාවකින් තේ හැන්දක පමන කොටසක් වෙන් කර ගැනීමට හැකි නම් ඒ කුඩා කොටස තුල පවා ටොන් ගණනක පමන ස්කන්ධයක් පවතී. තවද මෙවැනි තාරකාවක උෂ්ණත්වයද ඉතා විශාල අගයකි. නියුට්රෝන තාරකා තුල න්යෂ්ටික විලයන ප්රතික්රියා සිදු නොවූවත් පෙර තිබූ උෂ්ණත්වය කුඩා වර්ගපලයක් තුලට සාන්ද්රණය වීම හේතුවෙන් තාප ශක්තිය විකිරණය වීම අවම වීම නිසා පෙර තිබූ උෂ්ණත්වය බොහෝ කාලයක් පවත්වා ගනියි.
අධික චුම්බක ක්ෂේත්රයක්ද පවතී. මුලදී තාරකාවට යම් චුම්බක ක්ෂේත්රයක් පැවතුනත් කුඩා අරයක් දක්වා සංකෝචනය වීමේ ක්රියාවලිය හේතුවෙන් චුම්බක බල රේඛා ක්රමයෙන් ලංවී අධික චුම්භක ක්ෂේත්රයක් නිර්මාණය කර ගනී. භ්රමණ වේගයද ඉතා අධිකය. මෙහිදී පලමුව තාරකාවට එක්තරා භ්රමණ වේගයක් පැවතුනත් සංකෝචනය වීමේදී අරය කුඩා වන අතර ගම්යතා සංස්ථිති මූලධර්මය හරහා භ්රමණ වේගය ක්රමයෙන් වැඩිකර ගනී.
ඉහත සදහන් කරන ලද්දේ නියුට්රෝන තාරකාවක මූලික ලක්ෂණයන්ය. නමුත් නියුට්රෝන තාරකා හා පල්සාර අතර ඇති සම්බන්ධය කුමක්ද?
පල්සාරයක ගෝල්ඩ් ආකෘතිය.
අපි නැවතත් අපේ කලින් මාතෘකාවට එමු. පල්සාරයක ආකෘතිය පැහැදිලි කිරීමට විවිධ පුද්ගලයින් අතින් විවිධ ආකාරයේ ආකෘති නිර්මාණය කෙරුණි. නමුත් ඉන් බොහොමයක් ප්රතික්ෂේප විනි. මේ අතර 1968 වසරේදීම තාරකා භෞතික විද්යාඥයෙක් වූ ටොමි ගෝල්ඩ් (Tommy Gold) එදිරිපත් කල ආකෘතිය එකල සිදුකර තිබූ නිරීක්ෂණයන්ට ඉතා මැනවින් ගැලපුණු බැවින් එය පල්සාර පැහැදිලි කිරීමේ ආකෘතිය ලෙස පිලිගැනුනි. අදටත් අප සතුව පල්සාර පිලිබද ඉතා සවිස්තරාත්මක ආකෘතියක් නොතිබුනත් පල්සාර විස්තර කිරීමේදී යොදා ගැනෙන්නේ ටොමි ගොල්ඩ් ආකෘතියයි.
කේම්බ්රිජ් පල්සාරය සොයාගැනීමත් සමගම ලොව පුරා ඇති ප්රබල රේඩියෝ දුරේක්ෂ කිහිපයක්ම තවත් මෙවැනිම ආකාරයේ වස්තු පිලිබද අධය්යනයට යොදවනු ලැබූ අතර එහි ප්රතිපලයක් ලෙස තවත් පල්සාර කිහිපයක්ම සොයාගැනුනි. අද වන විට පල්සාර 600 කටත් වඩා වැඩි ප්රමාණයක් සොයාගෙන තිබේ. තවද දිත්ව නියුට්රෝන තාරකා පද්ධති, තාරකා හා නියුට්රෝන තාරකා පද්ධති, ග්රහයින්ගෙන් සැදුම්ලත් නියුට්රෝන තාරකා පද්ධති සහ ඉතා කුඩා ආවර්ත කාලයක් සහිත පල්සාර ආදී ලෙස විවිධ පල්සාර වර්ග සොයා ගැනීමටද විද්යාඥයින්සමත් වී ඇත. නවතම සොයාගනීම් සමග පල්සාර පිලිබද අධ්යයනය තවදුරටත් සිදුවෙමින් පවතී. තාරකා විද්යාවේ නව අංශයකට මන් පෙත් විවර කර දුන් මේ වටිනා සොයාගැනීම වෙනුවෙන් 1974 දී මහාචාර්ය ඇන්ටොනි හෙවිෂ් (Antony Hewish) නොබෙල් ත්යාගයෙන් පිදුම් ලැබීය.